Three-Space Property on Normed Spaces

P. Sam Johnson

DQC

Let M be a closed subspace of a Banach space X.

A property *P* is a **three-space property** if two of the spaces *X*, *M*, X/M have the property *P*, then the third must also have the property *P*.

We shall discuss the following in the lecture.

- Finite-dimensionality is a three-space property.
- Completeness is a three-space property.
- Separability is a three-space property.
- Reflexivity is a three-space property.
- Dunford-Pettis property is not a three-space property.

Let M be a subspace of a vector space X.

We can define a new vector space called the **quotient space**, or **factor space** whose underlying set is the collection $\{x + M : x \in X\}$ of *all translates* of *M*.

The translates of M are obtained by an equivalence relation (verify) defined by $x \sim y$ iff $x - y \in M$. The set of all such equivalence classes $\{x + M : x \in X\}$ will be referred to as X/M (read as X modulo M).

The translate x + M is called the **coset** of M containing x.

We define (x + M) + (y + M) = (x + y) + M.

We add the particular representative of the equivalence classes and take the equivalence class to which their sum belongs.

Similarly, if $\alpha \in \mathbb{K}$, we define $\alpha(x + M) = (\alpha x) + M$.

We can show that the operations of addition and scalar multiplication do not depend on the representatives chosen.

Thus X/M is a vector space.

The zero of X/M is M and -(x + M) = (-x) + M.

The dimension of X/M is **codimension** of M with respect to X (or, the deficiency of M with respect to X), denoted by $\operatorname{codim} M = \dim(X/M)$.

Example 1.

In
$$\mathbb{R}^2$$
, $M = \{(x, y) : x = 0\}$, the y-axis.

Then \mathbb{R}^2/M is the collection of all vertical lines in the plane, with the norm of each such line being its distance from the origin, that is, the absolute value of its x-intercept. The coset (1,2) + M is the set $\{(x,y) : x = 1\}$.

Some results are based on geometric ideas that are easier to visualize if this example is kept in mind.

Example 2.

In \mathbb{R}^3 , if $M = \{(x, y, z) : z = 0\}$ (xy-plane), then the translate of M containing (1,2,3) is the plane $\{(x, y, z) : z = 3\}$ parallel to the xy-plane. Here dim $\mathbb{R}^3/M = 1$.

Similarly, if $M = \{(x, y, z) : x = y = 0\}$ (z-axis), then the translate of M containing (1,2,3) is the line $\{(x, y, z) : x = 1 \text{ and } y = 2\}$ parallel to the z-axis. Here dim $\mathbb{R}^3/M = 2$.

Example 3.

Consider the linear space $c^{(3)}$ of all sequences $x = (x_n)_{n \in \mathbb{N}}$ such that $(x_{3k+q})_{k=0}^{\infty}$ converges for q = 0, 1, 2 and the subspace c_0 such that $\lim_{n \to 1} x_n = 0$.

Every $x \in c^{(3)}$ can be represented as $x = b_1e_1 + b_2e_2 + b_3e_3 + a$ where $e_1 = (1, 0, 0, 1, 0, 0, 1, 0, 0, ...), e_2 = (0, 1, 0, 0, 1, 0, 0, 1, 0, ...), e_3 = (0, 0, 1, 0, 0, 1, 0, 0, 1, ...)$ and $a \in c_0$.

 $[e_1]$, $[e_2]$ and $[e_3]$ form a basis for $c^{(3)}/c_0$ and dim $c^{(3)}/c_0 = 3$.

Example 4.

 \hat{c} is the linear space of double sequences $x = (x_n)_{n=-\infty}^{\infty}$ such that the limits $b_1 = \lim_{n \to \infty} x_n$ and $b_2 = \lim_{n \to -\infty} x_n$ exist and the subspace \hat{c}_0 such that $\lim_{n \to \pm \infty} x_n = 0$.

Every $x \in \hat{c}$ can be represented as $x = b_1e_1 + b_2e_2 + a$ where $e_1 = (\dots, 0, 0, 1, 1, 1, \dots)$, $e_2 = (\dots, 1, 1, 0, 0, 0, \dots)$ and $a = (a_n)_{n=-\infty}^{\infty} \in \hat{c}_0$.

[e₁] and [e₂] form a basis for \hat{c}/\hat{c}_0 and dim $\hat{c}/\hat{c}_0 = 2$.

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Norm for X/M

Having noted that X/M is a linear space with respect to the operations defined above, we now wish to suppose that X is a normed space and exhibit a norm for X/M. To do this, it is reasonable to ask if the norm of X induces a norm on X/M in some natural way. When $M \neq \{0\}$, ||x + M|| = ||x|| will not be a norm on X/M.

This situation helps us to think first about distance and then recover the norm from the notion of distance. The members of X/M are subsets of X, there is a natural way to define the distance between subsets x + M and y + M as the distance between cosets x + M and y + M:

$$d(x + M, y + M) = \inf\{||u - v|| : u \in x + M, v \in y + M\} \\ = \inf\{||x - v|| : v \in y + M\} = d(x, y + M).$$

Quotient norm

If $x \in \overline{M} \setminus M$, then $0 \le d(x + M, 0 + M) = d(x, M) = 0$ even though $x + M \ne 0 + M$. Note that $d(x, M) = 0 \iff x \in \overline{M}$.

If the function d is to have any hope of being a metric on X/M, then the set $\overline{M} \setminus M$ must be empty; that is, the set M must be closed.

Let *M* be a closed subspace of a normed space *X*. The **quotient norm** of a coset x + M can be interpreted to be distance from the point *x* to the set *M*, or as the distance from the origin of *X* to the set x + M, since $d(x, M) = d(x + M, 0 + M) = d(0, x + M) = ||x + M|| = \inf \{||x + m|| : m \in M\}$, the quotient norm is a norm of X/M.

Example 5.

Let X = C[0,1] with sup norm. Then $M = \{f \in X : f(0) = 0\}$ is a closed subspace of X. Each coset contains a constant function.

Suppose f(0) = a, then the two cosets [f] and [a] are same, where a is a constant function which takes the value a. Each member f in the quotient space X/M can be identified with the scalar a. Hence dim X/M = 1.

When $\mathbb{K} = \mathbb{R}$, *M* is all functions whose graphs passing through (0,0). The coset [f] where f(0) = a is all functions whose graphs passing through (0,a).

・ロト ・ 同ト ・ ヨト ・ ヨト

Example 6.

Let X = C[a, b] with sup norm and $t_1, t_2, ..., t_n$ be distinct points in [a.b]. Let $X_n = \{x \in X : x(t_j) = 0, \text{ for all } j = 1, 2, ..., n\}$. Then X_n is a closed subspace of X.

The dimension of X/X_n is n because each $[f] \in X/X_n$ can be identified with an n-tuple (a_1, \ldots, a_n) .

Exercise 7.

What is the dimension of the quotient space c/c_0 ?

Results

From the definition of quotient norm of x + M, we can prove the following result.

Proposition 8.

For every x + M and $\varepsilon > 0$, there exists $z \in M$ such that $||x + z|| < ||x + M|| + \varepsilon$. (OR) For every x + M and $\varepsilon > 0$, there exists x' in the coset x + M such that x + M = x' + M and $||x'|| < ||x + M|| + \varepsilon$.

Results

Proposition 9.

If M is a finite dimensional subspace of X, then ||x + M|| is attained at some point $y \in x + M$. (OR) Let Y be a finite dimensional subspace of a normed space X. Then for each $x \in X$, there is an element y_0 of Y such that $d(x, Y) = ||x - y_0||$.

The existence of y_0 is not necessarily unique.

Example 10.

Let
$$n_0 \in \mathbb{N}$$
 be fixed. Let $E = \langle \{e_1, \ldots, e_{n_0} \rangle$ be a subset of ℓ_{∞} and $x = e_{n_0+1} \in \ell_{\infty}$. Then $d(x, E) = 1$ and $||x - y||_{\infty} = 1$ for all $y = (\alpha_1, \ldots, \alpha_n, 0, 0, \ldots) \in E$ with $|\alpha_i| \leq 1$.

Results

Proposition 11.

Let M be a closed subspace of a normed space X. Then $(x_n + M)$ converges to x + M iff there is a sequence (y_n) in M such that $x_n + y_n$ converges to x in X.

Definition 12.

Let M be a closed subspace of a normed space X. A property P is a **three-space property** if two of the spaces X, M, X/M have the property P, then the third must also have the property P.

Theorem 13.

Finite-dimensionality is a three space property.

Theorem 14.

Completeness is a three space property.

Separable spaces

Definition 15.

A normed space X is a **separable space** if X has a countable dense subset D. That is, if there exists a countable set D of X such that for every $x \in X$ and r > 0, there exists $y \in D$ such that ||x - y|| < r.

We denote $\mathbb{K}_{\mathbb{Q}}$ the set of rationals when $\mathbb{K} = \mathbb{R}$ or the set of complex numbers with rational real and imaginary parts when $\mathbb{K} = \mathbb{C}$.

Theorem 16.

Separability is a three space property.

Theorem 17.

Reflexivity is a three space property.

Image: A matrix and a matrix

Dunford-Pettis property is not a three-space property

Definition 18.

A Banach space X is said to have **Dunford-Pettis property** if any weakly compact operator $T : X \to Y$ transforms weakly compact sets of X into relatively compact sets of Y.

Jesus M. F. Castillo and Manuel Gonzalez have proved in 1993 that the **Dunford-Pettis property is not a three-space property**.

Example in Algebra

 $S_3/A_3 = S_2$ is commutative and A_3 is commutative but S_3 is not commutative.

∃ >

DQC

References

Jesus M.F. Castillo and Manuel Gonzalez, *Three-space Problems in Banach Space Theory*, Springer, 1997.

Robert E. Megginson, An Introduction to Banach Space Theory, Springer, 1998.

∃ →

.

< A